If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-35x-63=0
a = 2; b = -35; c = -63;
Δ = b2-4ac
Δ = -352-4·2·(-63)
Δ = 1729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-\sqrt{1729}}{2*2}=\frac{35-\sqrt{1729}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+\sqrt{1729}}{2*2}=\frac{35+\sqrt{1729}}{4} $
| 3(x-10)=x-2 | | 3(2x+x)+4x+2=-12 | | 33+2x=38 | | 6(x+5)+2=44 | | 90=6x+6(2x-6) | | 4(3x+4)=76 | | 74=7a+11 | | 3v−3v+v+4v−3v=20 | | 8x-15=815 | | x=4x+45+15 | | -2(-3n-4)-10=16 | | 4(-3+3x)=84 | | 24x+4+2x=3(10x | | -53x=-106 | | 4y=863 | | -200x=-1000 | | 17x+9=40 | | 13+2k=3k+ | | 24+x-9x=-8 | | x+31/2=6 | | -200x-1735=-2736 | | 2k-6+3k=-57 | | 5z+10=90 | | b–315=1 | | x^2+50x=350 | | n/6=6/8 | | 2x+4x+4x+40=60+40 | | 18=3k-4 | | m–318=1118 | | 3=4•(x-4) | | 1.9=r0.3 | | 2r+8+r=-7 |